China supplier 16 Way Pon Fiber Optic Plitter Fiber to Fiber Coupling nm couplimg

Product Description

Fiber Optic Splitter Product Name

16 way pon fiber optic plitter fiber to fiber coupling

Fiber Optic Splitter Description:

PLC-Planar Lightwave Circuit Splitter is a kind of power splitter based on the integrated quartz baseplate.
Single Mode PLC 1×N and 2×N Splitter divide uniformly optical signals from 1 or 2 inputs to multiple
outputs, and spliter can be operated in reverse direction to combine multiple signals into fiber or 2 fibers.

Fiber Optic Splitter Features:
Low Insertion loss
Low PDL
Compact Design
Good channel-to-channel uniformity
Wide Operating Wavelength: From 1260nm to 1650nm
Wide Operating Temperature:From -40ºC to 85ºC
High Reliability and Stability

Fiber Optic Splitter Applications 
FTTX Systems
PON Networks
CATV Links
Optical Signal Distribution

Fiber Optic Splitter Compliance 
Telcordia GR-1209-CORE
Telcordia GR-1221-CORE
RoHS
 
Fiber Optic Splitter Specifications

Table 1 – 1×N PLC Splitter
 

Parameters 1×2 1×4 1×8 1×16 1×32 1×64
Operating Wavelength (nm)     1260~1650    
Fiber Type     G657A or customer specified  
Insertion Loss (dB)(P/S Grade) 3.8/4.0 7.1/7.3 10.2/10.5 13.5/13.7 16.5/16.9 20.5/21.0
Loss Uniformity (dB) 0.4 0.6 0.8 1.2 1.5 2.0
Return Loss (dB) 55 55 55 55 55 55
Polarization Dependent Loss(dB) 0.2 0.2 0.2 0.25 0.3 0.35
Directivity (dB) 55 55 55 55 55 55
Wavelength Dependent Loss(dB) 0.3 0.3 0.3 0.5 0.5 0.5
Temperature Stability(-40~85 0.4 0.4 0.4 0.5 0.5 0.5
ºC)(dB)
           
Operating Temperature (ºC)     -40~85    
Storage Temperature (ºC)     -40~85    
Device Dimension (mm) 40×4×4 40×4×4 40×4×4 50×4×4 50×7×4 60×12×4
(L×W×H)
           
Module Dimension (mm) 100×80×10 100×80×10 100×80×10 120×80×18 140×115×18 140×115×18
(L×W×H)
           
Mini-Module Dimension (mm) 50×7×4 50×7×4 60×7×4 60×12×4 80×20×6 N/A
(L×W×H)
           
Table 2 – 2×N PLC Splitter            
Parameters 2×2 2×4 2×8 2×16 2×32 2×64
Operating Wavelength (nm)     1260~1650    
Fiber Type     G657A or customer specified  
Insertion Loss (dB) 4.0 7.6 11.0 14.4 17.5 21.0
Loss Uniformity (dB) 0.6 1.0 1.2 1.5 1.8 2.2
Return Loss (dB) 55 55 55 55 55 55
Polarization Dependent Loss(dB) 0.2 0.2 0.3 0.3 0.4 0.4
Directivity (dB) 55 55 55 55 55 55

 
Notes:
 
Specified without connectors.
Add an additional 0.15dB loss per connector.

FQA :

1. Q: Are you a manufacturer?
A: yes, we are a manufacturer , FTTH solution and data center total solution provider in HangZhou, China, established in 2000.

2. Q: What’s your MOQ?
A: MOQ can be 1 pcs, but the price is not competitive.More quantity,the price will be more competitive.

3. Q: Can you quote FOB price?
A: yes. We can delivery by air, DHL, TNT, UPC, FEDEX, etc. For big quantity we will deliver it by sea.

We can quote price with freight and lead time for you, after you let us know detailed requirements with quantity.

We have competitive shipping forwarders. For more solutions, you can feel free to contact us.

4. Q: How is your quality?
A: Our production is according to IEC, Europe standard. CE, ISO, RoHS, CPR, and ANATEL certified.

All the products are 100% test before delivery.

5. Q: What’s your lead time?
A: It depends on the quantity and products. For fiber optic patch cord, the lead time can be 2 -3 working days within 5000 pcs. We keep the regular products in stock. Also, we can deal with urgent orders.

6. Q: What’s your warranty?
A: Depends 1 different product, we have1 years warranty for patch cord since delivery, but only responsible for non-artificial damage. For artificial damage, we can repair it for you for free, freight will be paid by your side.

7. Q: What’s your packing?
A: International export standard package.If you need to print your logo on the packing, please let us know before we quote.

8. Q: Can you offer OEM/ODM?
A: yes, we can. all products accept OEM /ODM. we can CZPT the Confidentiality Agreement.

9. Q: Can I have a sample?
A: It depends on which products, Free sample provide under 10 usd. Freight will be paid by buyer before delivery.

10. Q: How can I order?
A:1.send mail or inquiries with product name, specification, and quantity  to us . Provide your receive address if you need FOB,CIF,CFR price.

2.We will offer our quotation with lead time.

3.After the quotation confirmed, we will send a PI with our bank account.

4.Production will be arranged after the payment received.

5.Confirm the consignee with you before we deliver it.

6.The tracking number will be provided after the delivery.

11. Q: What your payment term?
A: T/T, Western Union, Paypal, MoneyGram at once. For big amounts, can be 50% deposit in advance, 50% balance paid before delivery.

Workshop:

Certificates:

ISO9001, ISO1400, CE, RoHS, CPR, ANATEL certified

Exhibitions:

OFC, CommunicAsia, ECOC, Netcom, SVIAZ ICT, AFRICACOM, CAIRO ICT, etc. 

Shipping Cost:

Estimated freight per unit.



To be negotiated|


Freight Cost Calculator

Type: Fiber Optic Splitter&Coupler
Wiring Devices: ODF
Certification: CE, ISO, RoHS, GS
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

China supplier 16 Way Pon Fiber Optic Plitter Fiber to Fiber Coupling  nm couplimg

nm coupling

How does a flexible coupling handle angular, parallel, and axial misalignment?

A flexible coupling is designed to accommodate various types of misalignment between two rotating shafts: angular misalignment, parallel misalignment, and axial misalignment. The flexibility of the coupling allows it to maintain a connection between the shafts while compensating for these misalignment types. Here’s how a flexible coupling handles each type of misalignment:

  • Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not collinear and form an angle with each other. Flexible couplings can handle angular misalignment by incorporating an element that can flex and bend. One common design is the “spider” or “jaw” element, which consists of elastomeric materials. As the shafts are misaligned, the elastomeric element can deform slightly, allowing the coupling to accommodate the angular offset between the shafts while still transmitting torque.
  • Parallel Misalignment: Parallel misalignment, also known as offset misalignment, occurs when the axes of the two shafts are parallel but not perfectly aligned with each other. Flexible couplings can handle parallel misalignment through the same elastomeric element. The flexible nature of the element enables it to shift and adjust to the offset between the shafts, ensuring continuous power transmission while minimizing additional stresses on the machinery.
  • Axial Misalignment: Axial misalignment, also called end-play misalignment, occurs when the two shafts move closer together or farther apart along their common axis. Flexible couplings can handle axial misalignment through specific designs that allow limited axial movement. For instance, some couplings use slotted holes or a floating member that permits axial displacement while maintaining the connection between the shafts.

By providing the capability to handle angular, parallel, and axial misalignment, flexible couplings offer several advantages for power transmission systems:

  • They help to prevent premature wear and damage to the connected equipment, reducing maintenance and replacement costs.
  • They minimize vibration and shock loads, enhancing the overall smoothness and reliability of the machinery.
  • They reduce the risk of equipment failure due to misalignment-induced stresses, improving the system’s operational life.
  • They allow for easier installation and alignment adjustments, saving time and effort during setup and maintenance.

Overall, flexible couplings play a crucial role in handling misalignment and ensuring efficient power transmission in various industrial applications.

nm coupling

What are the differences between elastomeric and metallic flexible coupling designs?

Elastomeric and metallic flexible couplings are two distinct designs used to transmit torque and accommodate misalignment in mechanical systems. Each type offers unique characteristics and advantages, making them suitable for different applications.

Elastomeric Flexible Couplings:

Elastomeric flexible couplings, also known as flexible or jaw couplings, employ an elastomeric material (rubber or similar) as the flexible element. The elastomer is typically molded between two hubs, and it acts as the connector between the driving and driven shafts. The key differences and characteristics of elastomeric couplings include:

  • Misalignment Compensation: Elastomeric couplings are designed to handle moderate levels of angular, parallel, and axial misalignment. The elastomeric material flexes to accommodate the misalignment while transmitting torque between the shafts.
  • Vibration Damping: The elastomeric material in these couplings offers excellent vibration dampening properties, reducing the transmission of vibrations from one shaft to another. This feature helps protect connected equipment from excessive vibrations and enhances system reliability.
  • Shock Load Absorption: Elastomeric couplings can absorb and dampen shock loads, protecting the system from sudden impacts or overloads.
  • Cost-Effective: Elastomeric couplings are generally more cost-effective compared to metallic couplings, making them a popular choice for various industrial applications.
  • Simple Design and Installation: Elastomeric couplings often have a straightforward design, allowing for easy installation and maintenance.
  • Lower Torque Capacity: These couplings have a lower torque capacity compared to metallic couplings, making them suitable for applications with moderate torque requirements.
  • Common Applications: Elastomeric couplings are commonly used in pumps, compressors, fans, conveyors, and other applications that require moderate torque transmission and misalignment compensation.

Metallic Flexible Couplings:

Metallic flexible couplings use metal components (such as steel, stainless steel, or aluminum) to connect the driving and driven shafts. The metallic designs can vary significantly depending on the type of metallic coupling, but some general characteristics include:

  • High Torque Capacity: Metallic couplings have higher torque transmission capabilities compared to elastomeric couplings. They are well-suited for applications requiring high torque handling.
  • Misalignment Compensation: Depending on the design, some metallic couplings can accommodate minimal misalignment, but they are generally not as flexible as elastomeric couplings in this regard.
  • Stiffer Construction: Metallic couplings are generally stiffer than elastomeric couplings, offering less vibration dampening but higher torsional stiffness.
  • Compact Design: Metallic couplings can have a more compact design, making them suitable for applications with limited space.
  • Higher Precision: Metallic couplings often offer higher precision and concentricity, resulting in better shaft alignment.
  • Higher Cost: Metallic couplings are typically more expensive than elastomeric couplings due to their construction and higher torque capacity.
  • Common Applications: Metallic couplings are commonly used in high-speed machinery, precision equipment, robotics, and applications with high torque requirements.

Summary:

In summary, the main differences between elastomeric and metallic flexible coupling designs lie in their flexibility, torque capacity, vibration dampening, cost, and applications. Elastomeric couplings are suitable for applications with moderate torque, misalignment compensation, and vibration dampening requirements. On the other hand, metallic couplings are chosen for applications with higher torque and precision requirements, where flexibility and vibration dampening are less critical.

nm coupling

How do you select the appropriate flexible coupling for a specific application?

Choosing the right flexible coupling for a specific application requires careful consideration of various factors to ensure optimal performance, reliability, and longevity. Here are the key steps to select the appropriate flexible coupling:

  1. Application Requirements: Understand the specific requirements of the application, including torque and speed specifications, misalignment conditions, operating environment (e.g., temperature, humidity, and presence of corrosive substances), and space limitations.
  2. Torque Capacity: Determine the maximum torque that the coupling needs to transmit. Choose a flexible coupling with a torque rating that exceeds the application’s requirements to ensure a safety margin and prevent premature failure.
  3. Misalignment Compensation: Consider the type and magnitude of misalignment that the coupling needs to accommodate. Different coupling designs offer varying degrees of misalignment compensation. Select a coupling that can handle the expected misalignment in the system.
  4. Vibration Damping: If the application involves significant vibrations, choose a flexible coupling with good damping properties to reduce vibration transmission to connected equipment and improve system stability.
  5. Environmental Factors: Take into account the environmental conditions in which the coupling will operate. For harsh environments, consider couplings made from corrosion-resistant materials.
  6. Torsional Stiffness: Depending on the application’s requirements, decide on the desired torsional stiffness of the coupling. Some applications may require high torsional stiffness for precise motion control, while others may benefit from a more flexible coupling for shock absorption.
  7. Cost and Life-Cycle Considerations: Evaluate the overall cost-effectiveness of the coupling over its expected life cycle. Consider factors such as initial cost, maintenance requirements, and potential downtime costs associated with coupling replacement.
  8. Manufacturer Recommendations: Consult coupling manufacturers and their technical specifications to ensure the selected coupling is suitable for the intended application.
  9. Installation and Maintenance: Ensure that the selected flexible coupling is compatible with the equipment and shaft sizes. Follow the manufacturer’s installation guidelines and recommended maintenance practices to maximize the coupling’s performance and longevity.

By following these steps and carefully evaluating the application’s requirements, you can select the most appropriate flexible coupling for your specific needs. The right coupling choice will lead to improved system performance, reduced wear on equipment, and enhanced overall reliability in various mechanical systems and rotating machinery.

China supplier 16 Way Pon Fiber Optic Plitter Fiber to Fiber Coupling  nm couplimgChina supplier 16 Way Pon Fiber Optic Plitter Fiber to Fiber Coupling  nm couplimg
editor by CX 2023-08-09

coupling

As one of leading coupling manufacturers, suppliers and exporters of mechanical products, We offer coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of coupling

Recent Posts